
GateAccess: Residential Access Control
& Community Management
Technical Documentation & Installation Guide

Part I: Executive Development Summary
1. Project Overview
Platform: GateAccess – Access Control and Residential Management
Architecture: Modular LAMP Stack (Linux, Apache, MySQL, PHP)
Professionalism Estimate: 95% (Production Ready)
Core Infrastructure:

●​ Environment: aaPanel on Ubuntu 24.04 LTS.
●​ Server: Apache (optimized with PHP-FPM).
●​ Language: PHP 8.2 / 8.3.
●​ Database: MySQL 5.7 / 8.0.

Architecture Design:
The system features a highly modular code structure organized by layers (/admin, /api,
/includes, /modules, /config). It enforces a strict separation between:
●​ Presentation: HTML5 / CSS3 (Tailwind/Bootstrap based).
●​ Logic: PHP 8.2 (Object-oriented and procedural hybrid for performance).
●​ Interaction: Vanilla JS + jQuery + AJAX.

Key Features:

●​ Role-Based Access Control (RBAC) at both menu and endpoint levels.
●​ Database-driven branding customization (Logos, Colors, Favicons).
●​ Morf AI Integration: Built-in virtual assistant support.
●​ PWA Ready: Manifests and service workers prepared for mobile app installation.

2. Code Metrics & Technologies
Analysis excludes external libraries (vendor/), logs, and backups.

Functional Code Volume:

●​ Total Functional Code: ≈ 25,400 lines.
●​ PHP: ≈ 16,200 lines (134 files) – 63.9% (Core Logic).
●​ JavaScript: ≈ 6,300 lines (27 files) – 24.9% (Interaction).
●​ CSS: ≈ 2,800 lines (35 files) – 11.2% (Styling).

The AJAX Layer (Internal API):
The system is not a static panel; it is a reactive web application.
●​ Scope: Over 80 AJAX endpoints located in /admin/**/ajax/*.php.
●​ Volume: Approximately 7,500 lines of code (approx. 46% of total PHP).
●​ Functionality:

○​ Real-time QR scanning and access logging.
○​ Dynamic DataTables (server-side pagination, filtering).
○​ Asynchronous saving for settings, users, residents, and properties.
○​ Background task generation (PDFs, ZIPs).

3. Security Architecture
Security Rating: Grade A (Verified by SecurityHeaders/Snyk).

HTTP Hardening:

●​ HSTS (Strict-Transport-Security): Enforces HTTPS, preventing protocol downgrade
attacks.

●​ CSP (Content-Security-Policy): Restricts script/style sources to mitigate XSS attacks.
●​ X-Frame-Options: Prevents Clickjacking by disallowing iframe embedding from external

domains.
●​ X-Content-Type-Options: Prevents MIME-sniffing exploits.
●​ Referrer-Policy: Protects sensitive internal URLs.
●​ Permissions-Policy: Restricts browser hardware access (camera/mic/geolocation) to

reduce attack surface.

Application Level Security:

●​ Centralized Sessions: Managed via config/session_boot.php with secure cookie flags
(HttpOnly, Secure).

●​ Strict Authentication: Every module validates if (empty($_SESSION['uid'])) { exit; }.
●​ CSRF Protection: Anti-forgery tokens implemented on critical forms (Login, Global

Config).

4. Dynamic Sidebar Logic
The navigation menu (/includes/sidebar.php) is an intelligent component, not static HTML.

4.1 Initialization & Database Check
Ensures a valid database connection ($conn) and a secure session (start_session_safe())
before rendering.
4.2 Permission Engine (can_menu())
The logic determines visibility based on:
1.​ Super Admin (ID 1): Unrestricted access.
2.​ Global Items: Visible to all authenticated users.
3.​ Role-Based: Checks against $_SESSION['perms'] array (e.g., menu.qr, menu.projects,

menu.residents).

4.3 Dynamic Branding
Queries the config_global and sidebar tables to inject:
●​ App Name & Logo.
●​ Dynamic Favicon (via JavaScript injection).
●​ Color Palettes (Backgrounds, Accents, Text) injected via inline CSS variables.
●​ Morf AI Visibility: Controlled by the morfai_active flag.

4.4 Menu Sections

●​ General: Dashboard.
●​ AI: Morf AI Assistant (Chat widget).
●​ Security: QR Access Control (Scanner, Logs, History).
●​ Real Estate: Projects, Residences, Properties.
●​ Community: Residents, Family Members.
●​ Team: Users, Role Management.
●​ System: Global Config, PWA Settings.

Part II: Installation Guide
1. Overview
Thank you for purchasing GateAccess. This guide covers the installation process on a
standard Linux hosting environment.

Prerequisites:

1.​ Upload files to hosting.
2.​ Create MySQL Database.
3.​ Configure Connection.
4.​ Import SQL Data.
5.​ Login.

2. Server Requirements
Recommended Environment:

●​ OS: Ubuntu 24.04 LTS (via aaPanel).
●​ Web Server: Apache (with mod_rewrite enabled).
●​ PHP: Version 8.2 or 8.3 (Tested).
●​ Database: MySQL 8.x (Backward compatible with 5.7).
●​ SSL: Required for production (HTTPS).

Required PHP Extensions:

●​ mysqli
●​ mbstring
●​ json
●​ curl
●​ gd
●​ zip

3. Package Structure
After extracting the downloaded ZIP, the directory structure is as follows:

Plaintext

gateaccess/​
├── admin/ # Admin panel core files​
├── assets/ # CSS, JS, Images​
├── config/ # Database and Session configuration​
├── includes/ # Shared components (Sidebar, Header)​
├── database/ # SQL Import file​
└── ...​

4. Step-by-Step Installation

Step 1: Upload Files
1.​ Extract the main ZIP file.
2.​ Upload the contents of the gateaccess/ folder to your server's public root (e.g.,

public_html/ or /www/wwwroot/yourdomain.com/).

Step 2: Create Database
1.​ Log in to your hosting control panel (aaPanel, cPanel, etc.).
2.​ Create a new MySQL Database.
3.​ Create a Database User and assign it to the database with ALL PRIVILEGES.
4.​ Write down the Database Name, Username, and Password.

Step 3: Configure Connection
1.​ Navigate to the config/ directory on your server.
2.​ Open db.php in a code editor.
3.​ Update the constants with your credentials:

PHP

// config/db.php​
define('DB_HOST', 'localhost');​
define('DB_NAME', 'your_db_name');​
define('DB_USER', 'your_db_user');​
define('DB_PASS', 'your_db_password');​

Step 4: Import Data
1.​ Open phpMyAdmin.
2.​ Select your new database.
3.​ Click Import.
4.​ Upload the file located at database/gateaccess.sql.
5.​ Click Go/Execute.

Step 5: Final Verification & Login
1.​ Navigate to your domain: https://your-domain.com/admin/auth/login/
2.​ Log in using the default Super Admin credentials:

Username: Morfe092
Password: gaia1234

Security Note: Please change this password immediately after your first successful login via
the "My Profile" or "Users" section.

	GateAccess: Residential Access Control & Community Management
	Technical Documentation & Installation Guide

	Part I: Executive Development Summary
	1. Project Overview
	2. Code Metrics & Technologies
	3. Security Architecture
	4. Dynamic Sidebar Logic

	Part II: Installation Guide
	1. Overview
	2. Server Requirements
	3. Package Structure
	4. Step-by-Step Installation
	Step 1: Upload Files
	Step 2: Create Database
	Step 3: Configure Connection
	Step 4: Import Data
	Step 5: Final Verification & Login

